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TECHNICAL NOTE D-4

INFLUENCE OF SHAFT DEFLECTION AND SURFACE ROUGHNESS ON
LOAD-CARRYING CAPACITY OF PLAIN JOURNAL BEARINGS

By F. H. Raven and R. L. Wehe

SUMMARY

Shaft deflection is one of the many factors known to limit the load
capacity of full journal bearings to magnitudes less than the infinite
value predicted by hydrodynamic theory. This deflection produces an ad-
verse alinement of journal and bearing that causes metal contact at the
bearing ends and subsequent failure by seizure. The analysis presented
herein, together with experimental data, shows that the load capacity of
a bearing with flexible shaft may be predicted to a reasonable order of
magnitude. Shaft deflection and roughness of the bearing surfaces are
shown to be factors of first-order importance in limiting the load ca-
pacities of bearings. On the basis of the criteria presented, it is
shown that the optimum length-diameter ratio of a bearing is reasonably
predictable.

INTRODUCTION

The purpcose of this report is to set forth a criterion that includes
shaft deflection for estimating the maximum load capacity of full journal
bearings. Hydrodynamic theory for journal bearings predicts an infinite
load capacity as the oil film thickness approaches zero. However, ana-
lytical approximations in this theory do not include the effect of elas-
tic deflection of the journal that becomes of the order of magnitude of
the film thickness as the load increases.

In hesvily loaded bearings, metallic contact of the ;journal and
bearing occurs at some local point, usually at the ends of a bearing, be-
cause of elastic deflection of the shaft. Figure 1 shows two typical
cases of the attitude of a deflected shaft in the bearing, one being a
central bearing where the curvature of the journal causes a reduced film
thickness at the two ends of the bearing, and the other being an end
bearing where the slope of the deflected shaft causes a reduced film at
the inboard end of the bearing.



According to hydrodynamic theory, an ideally straight shaft under
load is displaced in the bearing clearance as shown in figure 2. The
hydrodynamic displacement e is in a direction given by the attitude
angle ®; but for a flexible shaft the elastic deflection within the
bearing length is parallel to the direction of the load such that the
attitude angle op at the end of the bearing is less than ¢.

Failure does not necessarily occur when local metallic contact be-
tween the journal and bearing first takes place. Because of the con-
formability of certain bearing materials, bearings that have been care-
fully run in may operate satisfactorily even though metallic contact
geometrically appears to exist over some length 1' mnear the ends of
the bearing as shown in figure 3. As run-in proceeds with only local
heating effects, increases in 1' give increases in mean eccentricity
ratio and corresponding increases in hydrodynamic load capacity.

It should be noted that the misalining effect of the slope of the
elastic curve of a flexible shaft in an end bearing could be eliminated
by either a self-alining bearing support or by matching the elastic
slope of the bearing mounting with that of the shaft. The purpose of
this report is to evaluate the effect on load capacity when this improve-
ment is not provided. Since the shaft is usually much more flexible than
the bearing support, the words shaft stiffness or shaft deflection are
used herein to refer to the displacement caused by the difference in
alinement of the bearing and the Jjournal. With perfect alinement and
zero curvature of the journal the minimum film thickness i1s limited by
surface roughness.

Thus, the geometric relations of Jjournal and bearing in figures 1
and 2 indicate that the load capacity of a bearing depends on: (l)
hydrodynamic relations, (2) shaft stiffuness, (3) bearing length-diameter
(Z/d) ratio, and (4) roughness of the bearing surfaces. For an ideally
rigid shaft and ideally smooth bearing surfaces, the load capacity of a
bearing is infinite. The load capacity is reduced to some finite value
if the metallic contact of the surface asperities due to surface rough-
ness breaks through the oil film to produce high friction and a prohibi-
tive temperature rise. If the shaft has relatively great flexibility,
metallic contact at a local point limits the load capacity, and surface
roughness has a lesser limiting influence. For a flexible shaft, the
bearing length-diameter ratio also has an important effect, since long
bearings are less able to accommodate a sloping shaft. As a bearing be-
comes shorter, the effect of shaft deflection within the bearing length
is reduced, and a higher mean eccentricity is given; but at the same time
a shorter length reduces load capacity hydrodynamically.

In this report the load capacity of a bearing with flexible shaft
is evaluated mathematically by using the criterion of first local metallic
contact. Charts usable in design, which in dimensionless form show load
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“ capacity as a function of length-diameter ratio with certain shaft stiff-
ness factors as parameters, are presented. A method of determining the
optimum Z/d ratio of a bearing for maeximum load capacity, based both
on shaft deflection and bearing surface roughness, is given.

The hydrodynamic relations on which the following analysis depends
are those given by the short-bearing approximation (ref. 1) and those
determined experimentally (ref. 2). The relations concerned with shaft
deflection are those for a simply supported beam and a cantilever beam
! and include the effect of elastic curvature on center bearings and the
| effect of elastic slope on end bearings.

Analytical calculations of bearing load capacity based on shaft de-
flection are compared with the capacities obtained experimentally by the
Battelle Memorial Institute and are shown to be of equal order of magni-
tude. Experimental curves presented by Falz and by Deck show the depeund-
ence of bearing load capacity on Z/d ratio. Curves obtained analyti-

0 cally are similar in form and show an optimum Z/d.

This investigation was conducted by the bearing research group in

the Department of Machine Design, Sibley School of Mechanical Engineering,

Cornell University, Ithaca, New York, under the sponsorship and with the
financial aid of the National Advisory Committee for Aeronautics.

SYMBOLS

A deflection-eccentricity ratio, k8/e

| a,b distance between center bearing and end bearing, in.

2 2
1/¢c, load number for Z/d less than 1.0, &% C%%) (%)
cq diametral bearing clearance, in. -
cg/d  slearance ratio
Cy radial bearing clearance, cd/Z, in.

d bearing diameter, in.
E modulus of elasticity, psi

‘ e mean eccentricity or mean hydrodynamic displacement, in.

E end minimum film thickness, in.
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1/a

mean minimum film thickness, in.

moment of inertla of cross section of beam, in.%
beam stiffness parameter

coefficient denoting fraction of &

beam length, in.

bearing length, in.

length of contact at end of run-in bearing, in.
bearing length-diameter ratio

Jjournal speed, rps

eccentricity ratio, e/cr

total bearing load, 1b

unit bearing load on projected area, psi
load-spacing - beam-length ratio, a/L, b/L

beam~length - bearing-length ratio, L/Z

2
d
Scmmerfeld number, %? (——)

cq
load number for Z/d greater than 1.0
coordinates of beam elastic curve, in.
slope of elastic curve at end of beam, radian
ratio of error in hE to radial clearance Ch

deflection of journal within bearing length, in.

centipoises

fluid viscosity
© gLgx10b

, reyns

mean attitude angle between load line and line of centers, deg

attitude angle at end of bearing, deg
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ANALYSIS

When the effect of elastic bending of the shaft on bearing load
capacity is analyzed, the fact should be recognized that, even if the
journal remains essentially parallel to the bearing as in figure 1(b),
the elastic curvature within the length of the bearing is appreciable.
The local minimum film thickness hp at the end of the bearing is con-

siderably less than bhpjs,, which represents the idealized minimum film
thickness of a theoretically straight journal parallel to its bearing.

Figure l(b), which shows the elastic curve of a center bearing, 1l-
lustrates that the Journal has a different eccentricity at each point
along its length. It should be recognized that the center of the shaft
at the central transverse plane of the bearing will not necessarily be
at the idealized hydrodynamic displacement hmin‘ Thus, the difference

between hp and hmin depends on: (1) the effect of the elastic cur-

vature on the idealized hydrodynamic displacement, and (2) the shape of
the elastic curve. Since both (1) and (2) are related to the elastic
curvature, mathematically the difference between bhj;, and hp can be
expressed by a quantity k times the elastic deflection & within the
bearing length:

ho;, - bp = kd (1a)

In this form the value of k remains to be determined, but it is
evident that a real value of k exists for any particular bending cou-
figuration and operating condition. Experimental measurement of film
thickness at any point within the bearing length is difficult; and ana-
lytical methods become involved with a two-dimensional solution of
Reynolds' equation, in which the pressure distribution affects the shape
of the elastic curve.

With the concept of a mean eccentricity e represented by the
straight line in figure 1(b), it seems reasonable to assume that the dif-
Terence between hE and the mean line is less than the height of the
elastic curve or that k < 1. However, equation (la) holds without mak-
ing this assumption.

Since exact evaluation of k for a particular configuration is dif-
Ticult, an approximation of the value of k seems desirable. Perhaps
the simplest approximation for a center bearing (fig. 1(b)) is to assume
a uniformly distributed load on the beam; this gives an elastic curve in
the form of a fourth-degree parabola, for which the arithmetic mean occurs

at % ®. Thus, the center of the elastic curve is % ® away from the




mean line, and the difference between h .~ and hE is 0.8 B, which
gives an approximate value of k = 0.8 for a center bearing. This ap-
proximation was found to be of value in reducing the spread of experi-
mental measurements of eccentricity in previous investigations

(refs. 1 and 2).

Figures l(c) and 2 show the elastic slope or tilt of the Jjournal
axis in a bearing at the end of a shaft. The end of a shaft, considered
as part of a beam, represents a point where the bending moment is zero
and the elastic slope is large. Experiments on misalined bearings (ref.
3) have shown that, to a first approximation, the eccentricity e at
the central transverse plane of the bearing under a constant load re-
mains essentially fixed as the Jjournal is misalined by a couple that in-
clines the journal axis. In effect, the central point acts like a pivot
point. Thus, the hydrodynamic load on a misalined or inclined Jjournal
may be agpproximated to be the same as the load on a theoretically
straight and parallel shaft passing through the pivot point. This con-
cept enables the eccentricity of the center of an inclined journal to be
estimated from hydrodynamic data for a straight and parallel shaft. In
figure l(c)J the bending moment is small and the journal is essentially
straight, but inclined. Thus, the deflection &, from the pivot point
may be estimated as the slope times 1/2, where 1/2 is the half-length
of the bearing. Thus, for an end bearing the value of k 1is one to a
first approximation.

Thus, the value of k may be determined to varying degrees of ap-
proximation. However, in general, from equation (la), the difference
between h .. and hgp is kb, where k 1s an arbitrary coefficient.
Solving for hp gives

bg = hyjy - kB (1v)

Equation (1b) is realistic only when the attitude angle ¢ shown
in figure Z 1s equal to zero, However, when ¢ 1s other than zero, the
determination of hy depends also on attitude angle as well as on the
variables of equation (lb). As shown by the triangles appearing in the
clearance circle of figure 2, an approximate expression involving atti-
tude angle is:

hmin - hp = kb cos @

hp = Dy - k& cos o (2)

9Lg-d
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At conditions near metallic contact, the abttitude angle is small
and the cosine of the angle is near unity. Conservatively, cos ¢ = 1.0
could be used; but when @ = 20° is assumed to be an average value in
the heavily loaded region, equation (2) becomes

hg = hps, - 0.94 k3 (3)

Appendix A gives an analysis of the errors involved in the approxi-
mations of equations (2) and (5) to show that the approximations are
reasonable.

Mean Minimum Film Thickness

In order to use equation (3), it is necessary to evaluate hoin
and ©. The mean minimum film thickness by, involves the hydrodynamic
variables including load and may be evaluated from hydrodynamic theory.
According to the short-bearing approximation (ref. l), the mean eccen-
tricity e under hydrodynamic conditions is given by the curve of figure
4 in which eccentricity ratio n = e/cr is plotted against the bearing

variobles appearing in the load number., In reference 4, the equation of
this curve is rearranged so that the minimum film thickness hyiy rather

than the diametral clearance cg 1s included in the bearing variables
as a function of eccentricity ratio:

5 - p g be - ]

f(n)

where p is the film viscosity, N is Jjournal speed in rps, 1 1is bear-
ing length, and p 1s the unit load determined from the load P divided
by ld. Rearranging equation (4) gives

Dpin ]
- = J“—? \/:E‘(n) (for 1/da £1.0) (5)

Experiment (ref. 2) has shown that the short-bearing approximation
is reasonable for short bearings with length-diameter ratios equal to or
less than 1.0. Also, in reference 2, experiment shows that the short-
bearing solution approximates the behavior of longer bearings if a modi-
ficaticn in the Z/d term is made. In the form of equation (5), the
mean minimum-film-thickness function for bearings of Z/d > 1.0 is given

as follows:
Byin A 1S PYZEY
______ _ I e o /a > )
T = % \ VY (for 1/a 2 1.0) (6)

Il




Numerical evaluation of the function f(n) in equation (4) shows
that for values of n from 0.6 to 1.0 the function changes from 0.640 |
to 0.785. By assuming that most bearings will be heavily loaded at an ‘
eccentricity ratio in excess of n = 0.6, the variation of f(n) will
not be great. By selecting a mean eccentricity ratio of 0.8 and the
corresponding value of f(n) = 0.718, the maximum variation in f(n) is
approximately 10 percent. 8ince the minimum film thickness hg;, de-

pends on the square root of f(n) or 0.848, the maximum variation in

hpin is of the order of 5 percent. The following simplified expressions

resgult:

9L2-d

hmzin = 0.848 \/Ppﬂ (for 1/d £1.0) (72)
hyin D

7 = 0.848 774

(for 1/d 2 1.0) (7o)

To investigate further the error of assuming a constant f(n) = 0.718
for heavily loaded bearings, eguation (73) may be rearranged to give the
equation of eccentricity ratic n as a functlon of load number and may -
be plotted in figure 4. By substituting hpy;, = (cd/Z)(l - n) in equa-
tion (7a), the following equation results:

&6 -5 )

Plotting this equation on the coordinates of figure 4 indicates that
the curve is almost indistinguishable from the exact curve given by the
short-bearing approximation in the range of n > 0.6.

By using the simplified equations (7) and substituting them in equa-
tion (3), the equations for determining the minimum end clearance hp
appear as follows:

h
—ZE— = 0.848 ,’%\T— - 0.94 ]flé (for 1/a £1.0) (9a)
by D k8 >

5 = 0.848 72bE - 0.94 =2 (for 1/d Z1.0) (9p)

If the viscosity, Jjournal speed, load, and bearing length and diam-
eter are known and the deflection & within the length of the bearing
is calculable, the dimension of the thinnest point in the film may be
determined from equations (3). To facilitate the calculations, these -
equatlions are plotted in figure 5 and are in a form usable in design.
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In the foregoing, the hydrodynamic part of the analysis is based on
the numerical values obtained from the equations of the short-bearing
approximation. However, experimental measurements of eccentricity (ref.
2) differ somewhat from the analytical vslues as shown in figure 4. For
example, for a load number of 75, the analytical value of n is 0.80
and the experimental value is 0.92. The film thickness is proportional
to (L -~ n), which is 0.20 corresponding to n = 0.80, and 0.08 corre-
sponding to n = 0.92, This illustrates the greater sensitivity obtained
by using film thickness as the variable, since the difference is appar-
ently increased. Therefore, it would be conservative to base the bearing
load capacity on the experimental curve of figure 4 since the load ca-
pacity is less. A curve drawn through part of the experimental data in
figure 4 is obtained by using an average value of f(n) = 0.30 instead
of 0.718 and approximates the curve of experimental data in the range of

= 0.6 to 0.85. 1In the range higher than n = 0.85, a value of f(n)
less than 0.30 would be desirable to approximate the experimental data
?etter. Based on f(n) = 0.30, the equations comparable to equations

9) are:

= 0.546 \/ - 0.94 & 5 (for 1/d £ 1.0) (102)

h

TE = 0.546 J%E - 0.94 51&3 (for 1/d Z1.0) (10b)

In figure 5 are shown the curves for predicting hp from equations
(10) for comparison with those from equations (9). As may be seen, the
end minimum film thicknesses are smaller where the experimental hydro-
dynamic characteristics are used.

Maximum Load Capacity

A convenient and obvious design criterion is that the load capacity
of a bearing is a maximum when hgp is zero and the bearing surfaces are

in contact at a point. When the film thickness at the end of the bearing
is zero, the mean eccentricity generally will be greater than 0.6 for
reasonable stiffnesses of shaft. Therefore, when hyp equals zero, equa-
tions (9) reduce to the following expressions:

E'I\T - 0.81 (;5)2 (for 1/a £1.0) (11a)
LEN' (%)2 = 0.81 (E%)Z (for 1/d 2 1.0) (11b)
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Thus, figure 6 shows thzi ‘he maximum load capacity depends on the
square of the deflection ®; this indicates a rapid rise in load capacity
as the stiffness of the shaft is increased. Also, equations (11) show
an infinite load capacity for an ideally rigid shaft where O 1s zero.

The corresponding equations where the experimental hydrodynamic data
are used are the same as equatiocns (ll) except that the coefficient is
0.34 instead of 0.8l. Therefore, the load capacity based on experimental
hydrodynamic data is approximately 40 percent of the capacity based on
the short-bearing solution. Figure 6 shows the comparison of load ca-
pacities of the two cases.

Fvaluation of Deflection ©

Either of the two curves of figure 6 is a simple basic curve giving
the maximum load capacity of a bearing with a flexible shaft. However,
it is assumed that the deflection & within the length of the bearing
can be computed by analytical or graphical means. This in many instances
may be a complicated but possible process, since the theory of beam de-
flection is well developed. The major complication is that, 1f the max-
imum load of the bearing is to be determined, it is necessary to know the
load to determine the deflection ©, so that a trial and error solution
may be necesgary. However, for certain elementary cases of beam loadings,
calculations of © are readily made by mathematical means as illustrated
in the following paragraphs.

Two types of beams are considered: (1) a simply supported beam with
offcenter or unsymmetrical load as shown in figure 7, and (2) a canti-
lever beam as shown in figure 8. The bearings shown are of two classes:
end bearings where & depends on the slope of the ends of the beam, and
central bearings where O 1s dependent on the local curvature of the
bent beam and to some extent on the slope of the elastic curve. Of the
two classes of bearings, the end bearing is subject to a greater © and
will have the lower load capacity. For the end bearings, the calculation
of & depends only on the slope B of the beam times the half-length
1/2 of the bearing.

Deflection of End Bearings
For the simply supported beam of figure 7, the left end bearing has

the greater slope By, since 1t is nearest the applied load P. From
deflection formulsas,

By = %ﬁ (12 - 1°) (12)

al/z-"
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The unit pressure loading on the left end bearing may be expressed
in terms of the applied central load P as follows:

p—"—‘

£

X (13)

o

By substituting this expression in equation (12) and letting
I= ﬂd4/64, r=1L/1, and R = b/L, the following expression for By 1s

obtained:

3
Bl=§32(5) 22 (1 - R?)

3n B

1

(14)

The deflection © may be obtained from:

0 =

I

o
I
A

=

As shown in subsequent paragraphs,
equation (15) appear regularly for
is the distinguishing quantity for

By substituting equation (15) for B

(15)

the quantities in the brackets of
many cases of beam loading so that K
the deflection of the many cases.

in equations (11) for load

capacity, the following equations are obtained with k = 1.0 for end

bearings:
2 2
ﬁ% (%) = té%;%i;g (for 1/a £ 1.0) (16a)
2 12
i% (%) = Eﬁ%ﬁ%ﬁ;; (for 1/d 2 1.0) (16b)
where
2 z
K= 1.35 r% (1 - R®) = 1.33 (%) [; - (%)i] (17)
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Equations (16) show that the unit load capacity of an end bearing
is greatly influenced by 1/d ratio. As shown in the curves of equa-
tions (16) plotted in figure 9(a), the unit load capacity increases by
decreasing Z/d for a given value of the stiffness parameter K. How-
ever, this is somewhat misleading if a reduction of l/d is made by de-
creasing the bearing length 1, since the bearing length is also included
in X; although for a given design the influence of K would be less
than that of 1/d. If a reduction in 1/4& 1is made by increasing the
diameter d, K 1is unaffected and the increase in load capacity is pre-
dicted according to the curves of figure 9(a).

Figure 9(b) is similar to 9(a) except that the numerical values are
based on the hydrodynamic data determined experimentally, so that the
coefficient in equations (16) is 0.46 instead of 0.71; this gives more
conservative values of load capacity.

The bearing of the cantilever beam shown in figure 8 is also an end
bearing. Since the beam is different from the simply supported beam of
figure 7, the resultant formula for © 1is also different. However,
equations (16) and the curves of figure 9 also apply to this bearing if

K= 4r2 is used. The determination of & for the bearing of the canti-
lever beam is shown in appendix B.

Total Load Capacity of an End Bearing

The total load P that will just cause metallic contact to take
place is readily determined by multiplying the unit bearing pressure p
as determined in equations (16) by the projected bearing area 1d. By
substituting p = P/ld 1in equations (16) and using the expression for
K in equation (17), the following equations are derived for the end
bearing of the simply supported beam of figure 7:

e B O - 2 e
(18a)

P (L3 (1% _o.es8 1
(HNEz)l/S (d) <d) B (1 - Rz)z/g (Z/d)l/s (for 1/d 2 1.0)

(18p)

In dimensionless form, equations (18) give the total load capacity
of an end bearing as a function of Z/d. The dependence of load capacity
on Z/d ig shown in the family of curves in figure lO(a). The parameter
R 1ndicates the influence of the location along the beam of the applied
load; for a centrally placed load, R 1is equal to 0.5.

9/2-H



E-276

=)
w

The variation of the total load capacity of an end bearing with
change in bearing length is readily determined from figure 10(a); that
is, 1f all the bearing variables are held constant except 1, the curves
are a graphical representation of the variation of bearing capacity with
length alone. The maximum load capacity 1s obtained when the bearing
length is equal tec its diameter. As the length becomes larger than the
diameter, the capacity decreases because the increased effect of journal
deflection does not permit the bearing to run at a higher mean eccen-
tricity. As the length becomes less than the diameter, the bearing oper-
ates at a higher mean eccentricity; but the decrease of projected area
of the bearing lowers the total capacity.

Figure lO(a) also gives the curve for the total load capacity of an
end bearing of the cantilever beam of figure 8. Equations for this bear-
ing are similar to equations (18), since they are also derived from equa-
tions (16), except that K = 4rZ, The dependence on 1/d of this bear-
ing is somewhat different as shown by the equations in appendix C.

A companion set of curves giving numerical values of total load ca-
pacity based on the experimental hydrodynamic data with f(n) = 0.30
are shown in figure 10(b). Equations (18) apply except that the coeffi-
cient is 0.492 instead of 0.658 for end bearings of the simply supported
beamn.

Although equations (18) and figure 10 indicate that highest load
capacity is obtained at Z/d = 1.0, this is true only if Z/d depends
on a change in length. If the diameter d is changed instead, then the
effect on load capacity is not obvious from the curves. However, it is
pcssible to rearrange equations (18) so that 1 instead of d appears
in the left term.

__El__l/s (_)4/5 (z) = O 658 (for 1/d £1.0)

(LNEZ 2y2/3 (z/d)3

P (_)4/3 (z) - O 658 (for 1/a 2 1.0)

(uim2) /3 R2)2/3 (Z/d)ll/S
(19v)
The curves of equations (19) are shown in figures 11(a) and 11(b),

the former set of curves depending on the analytical hydrodynamic data
and the latter on the experimental data.
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If all bearing parametcrs other than diameter are kept constant,
the total load capacity increases rather sharply as the diameter is in-
creased, as may be seen from the curves of figure 1ll. As Z/d is made
to approach zero by increasing the diameter, the load capacity approaches
an infinite value because the shaft stiffness 1s increased greatly by
diameter increase to permit the bearing to operate at a higher mean
eccentricity before metallic contact takes place.

The equations that apply to the end bearing of the cantilever beam
are shown in appendix C.

Unit Load Capacity of a Central Bearing

If the inboard bearing of the simply supported beam of figure 7 is
considered, the calculation of & 1s most easily made when the bearing
is located at the center of the beam. The deflection of the beam at its

center is Ymax and coincides with the transverse central plane of the

bearing. Deflection formulas, as shown in appendix D, may be used to
determine the beam deflection Ymax @nd also the deflection yp at the

end of the bearing. As shown in figure 1(c), the deflection & within
the half-length of the bearing is the difference of the two beam
deflections:

As shown in appendix D, the resultant equation for & is expressed
as follows:

(o4
1
R

Bl (é)S]O.lEW (3r - 1) (21)

When this expression is substituted in equations (11) and k = 0.8
is used, the equations obtained are the same as equations (16) except
that the stiffness factor is K = 0.133 (3r - 1). It is observed that
K includes k in this case. Thus, the unit load capacity curves of

figure 9 may be used generally for both end bearings and central bearings

except that the proper K values must be used as indicated in the fig-
ures. A comparison of K values shows that the unit load capacity of a
central bearing is greater than an end bearing if all variables except
K are assumed constant in equations (16).

2/3
P K
central - < end ) (22>

pend KCentral

9Lz2-d
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For a simply supported beam with the central bearing located at the
beam center, the ratio of the unit load capacities of the two bearings is

L2 2/3
7.5 3

B ERT (23)

Peentral
Peng

If for illustration the length of the beam L 1s assumed five times
greater than the bearing length 1, then

Peentral
Pend

= 5.65

The ratio of load capacities is sensitive to 1L/l as equation (23) indi-
cates and thus decreases as the end and center bearings are brought to-
gether by decreasing the beam length L. Increasing the beam length, on
the other hand, rapidly increases the ratio of load capacities.

If the inboard bearing is offset from the center of the beam, the
determination of the effect of shaft deflection 1s somewhat more compli-
cated because the slope of the elastic curve becomes greater as the bear-
ing is located toward the end of the beam. However, the load capacity of
the offset bearing will fall somewhere between the capacities of an end
bearing and a central bearing.

Total Load Capacity of a Central Bearing

The total load P of a central bearing may be determined from equa-
tions (16) by substituting p = P/1d and K = 0.133 (3L/1 - 1). The
guantity (BL/l - 1) is closely approximated by the simpler expression
3L/1 for values of L greater than 1 by 3 or more. Thus, the follow-
ing equations are obtained:

2/3 2
s O @ fe e s

2/3 2
memys(3) @) =T e vazio) (e

Equations (24) are plotted in figure 12 to show the total load ca-
pacity of a central bearing as the Z/d ratio is varied by a change only
in the bearing length 1. As the bearing length approaches zero, the
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load capacity approaches an infinite value, because the effect of the
curvature of the deflected beam becomes small to permit the bearing to
operate at an increasingly larger mean eccentricity. However, the load
capacity of an extremely short bearing ultimately will be limited by the
bearing surface roughness rather than by the deflection of the shaft.

Figure 12 also shows the lower load capacity of the bearing when
the experimental hydrodynamic data of figure 4 are used rather than the
analytical data where the coefficients in equations (24) are 1.10 in-
stead of 1.46.

Equations (24) may be rearranged to show the variation of total
load capacity with Z/d where change in the bearing diameter d 1is the
sole influence.

P (£>2/3 (l)z 1.46 (for 1/a £1.0) (25a)

(E2)1/3 0 D NTYETE
2/3 2 .
15 (%) (3 G (for /0 2300 {280)

These equations are plotted in figure 13. The influence of 1/d
on load capacity where diameter is changed i1s much greater than where
length is changed, as may be seen by comparing the curves of figure 13
and figure 1l2. Reducing Z/d by increasing the diameter results in g
rapid increase in beam stiffness so as to make the load capacity of the
beam approach an infinite value as Z/d approaches zero. However, both
figures 12 and 13 show the same load capacity for Z/d = 1.0.

Load Capacity of Run-in Bearings

With a careful run-in, bearings made of conformable materials may
change shape under the loading of a hard journal on a flexible shaft.
As shown in figure 3, the ends of the bearing may be deformed by pressure
and rubbing such that the minimum end film thickness hg is nearly uni-

form over the distance 1' at the bearing ends. Two distinct regions

of load-carrying film exist under these conditions: the deformed region
and the undeformed region. After stabilization is reached in the running-
in process, the thin film in the deformed region undoubtedly supports

part of the bearing load, although the magnitude of this part is not
known. Estimating its magnitude is complicated by the lack of informa-
tion on the variation of the film thickness, which may be for either a
fitted or an irregular wedge. In the undeformed region the film remains
a wedge even in the neighborhood of closest approach,

9L2-4
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A mathematical determination of the load-carrying capacity of a run-
in bearing is difficult if both regions of supporting film are considered.
However, if it is conservatively assumed that the end regions do not con-
tribute to load support and that the film in the undeformed region sup-
ports the full lcad, then quantitative evaluation may be made. As de-
formaticn increases and 1' increases, the effective length of the bear-
ing is reduced; but because of the end deformation the bearing operates
at a higher mean eccentricity and possibly at a higher load capacity.

For a central bearing the reduction in effective length may result
in an increased load capacity as shown in figure 12, where load capacity
increases as 1/d becomes less. The load capacity may be even greater
than shown in figure 12 because of the additional support of the deformed
region. Running-in is normally manifest in a friction and temperature
rise that may be temporary if end deformation permits the bearing to
operate at a higher mean eccentricity and load capacity after the condi-
tions stabilize. An end bearing, however, may show a decreased load ca-
pacity on running-in, as shown in figure 10(a), if the effective Z/d
ratio of the bearing is reduced to below 1. Presumably the friction and
temperature rise in an end bearing would be greater than for a central
bearing and may not stabilize because of the decreasing load capacity
shown in figure 10(a). However, the degree to which the load support
from the deformed end would alleviate the teumperature rise is not known.

If in a given design it is known that a relatively high shaft flexi-
bility under load would result in a deformed bearing, it would be advis-
able rather to scrape the surface to a bellmouth profile conforming to
the bent shape of the journal. A circumferential wedge then would result
for the full bearing length to give increased load capacity.

Surface Roughness

Certain of the curves, such as those of figures 11, 12, and 13, show
that the load capacity of a bearing approaches an infinite value as the
Z/d of the bearing approaches zero. These curves indicate that, as a
bearing becomes very short, the effect of shaft flexibility becomes of
smaller importance and permits the bearing to operate at a high mean ec-
centricity. However, if metallic contact is the criterion of limiting
the load capacity, roughness of the bearing surface becomes important.

Friction rise due to metallic contact begins where the highest as-
peritieg of the two surfaces first make contact. As shown in reference
4, an gppreciable load-carrying film exists although failure may be immi-
nent because of the friction rise. At the condition of first surface con-
tact, the minimum filwm thickness hpin may be evaluated as the sum of

the "predominant peak roughnesses' of the two surfaces. Tarasov (ref. 5
IS g
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has shown that "predominant peak roughness,” which is a measure of true
surface roughness, may be determined from profilometer measurements times
a factor that depends on the method of finishing the surface. Reference
4 presents experimental data that show that for short bearings the load
capacity may be predicted reasonably well from equation (7a) on the as-

sumption that hmin is known from the surface roughnesses at initial

metal contact.

Rearranging equation (7a) gives

2 0TS 2 (for 1/d € 1.0) (28)

PN
<hmin>
d
Equation (26) gives unit load capacity as a function of 1/d and
the film thickness ratio hmin/d’ in which h ;. is assumed to be known

from the surface roughness. The total load capacity may be determined
by substituting p = P/1d.

3
= - O Tl (é—) (for 1/d € 1.0) (27)
wNd (hmin)
3

Equation (27), shown plotted in figure 14, is in & form that shows
the effect on total load capacity of varying the Z/d ratio by varying
only the bearing length., The load capacity rises rapidly with increase
in length and also rises rapidly as the surfaces more nearly approach
the ideally smooth condition and perwmit operation on a thin film at im-
pending contact of the surface asperities.

As discussed in the following section of this report, a number of
experimenters have sought to determine the ideal Z/d ratio of a heavily
loaded bearing and have shown it to be in the region of the short bearing
with Z/d equal to or less than 1.0. By superimposing the total load
capacity curve based on surface roughness on the curve based on shaft
flexibility, an optimum Z/d ratio is given by the intersection of the
two curves. If in a given design situation of a central bearing all the
variables are held constant except the bearing length, the load capacity
P would vary with length 1 as shown by the intersecting curves of fig-
ure 15(a). The left curve would be from figure 14 for a given surface
roughness, and the right curve would be for a given condition of shaft
bending. The optimum length of the bearing for maximum load capacity is
given by the intersection of the two curves. -
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Optimum 1/d

Recognizing that shaft flexibility influences the load capacity of
bearings, investigators such as Falz (ref. 6) and Deck (ref. 7) have ex-
perimentally determined Z/d ratios giving maximum load capacity. Falz
recommends values of 1/d between 0.3 and 0.8, and Deck recommends
values from 0.5 to 1.0. 1In the following paragraphs an illustrative ex-
ample is presented and analyzed by using the equations of this report to
support the findings of these investigators. The criteria used in the
example include the influence of surface roughness as well as shaft
deflection.

As shown in Ffigure 15(a), this illustrative example is a symmetri-
cally loaded, simple beam consisting of a l.0-inch-diameter steel shaft
with a beam length L of 3 inches between centers of the end bearings.
For the shaft length chosen, space limitations allow a maximum Z/d of
approximately 1.5. A shaft speed of 6,000 rpm (100 rps) and a low vis-
cosity of 1x10-6 reyn are assumed.

For the central bearing shown in figure 15(a), the dashed curve at
the right gives unit load capacity for various Z/d based on the crite-
rion that hp 1is zero because of beam deflection. The total load ca-

pacity P 1s first determined from the upper curve of figure 12 for
various Z/d and is then reduced to unit load capacity from p = P/Zd.

The dashed curves at the left of figure 15(a) are based on the cri-
terion that surface roughness limits the load capacity according to equa-
tion (26). Curves are shown for three minimum film thicknesses:
hoip = 0.000050, 0.000025, and 0.0000125 inch, The value of 50 micro-

inches represents a minimum film thickness for touching surface asperities
when each surface has a measured roughness of 5 microinches root mean
square. By the use of Tarasov's factor of approximately 5 for ground
surfaces, the true roughness of each surface is approximately 25 micro-
inches, giving a total of 50 microinches for hpj, when asperities are

at initial contact.

As shown in figure 15(a), the optimum 1/d is at the intersection
of' the dashed curves based on the two separate criteria. It may be seen
that the optimum Z/d for a given design depends on the surface finish.
For the roughest surfaces in figure lS(a), the optimum Z/d is approxi-
mately 0.5, and for the smoothest surfaces approximately 0.25. These
values agree in range with those obtained by Falz and Deck.

The curve of unit load capacity based on beam deflection in figure
15(a) is for the condition where the end minimum film thickness hp is

zero. However, since the surfaces are of some roughness, the first
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metallic contact of the surfaces at the ends of the bearing is at the
asperities of the surfaces, so that some end film thickness hp other

than zero exists. When the smoothest of the surfaces of the example is
considered, hp is 0.0000125 inch at first metallic contact. For this

value of hp, the unit load capacity may be determined from the more
general expression of equation (9a).

hg )

B _0.o48 o2 . .92 KO
1 P

) (for 1/a £1.0) (28)
For the central bearing of figure 15(a), k = 0.8 and & is given by
equation (21). By substituting the known variables of the illustrative
example in equation (28) and assuming that 3r - 1 = 3r = BL/Z in equa-
tion (21), the following equation relates unit load capacity to bearing
length:

12.5x10°0 = 0.848x1072 _1_ - 0.0478x10°° p13 (29)
P

The curve from equation (29) is plotted as a solid line in figure 15(a)
and shows the reduction in unit load capacity due to the assumption of a
value of hp greater than zero. The curve also shows that the optimum

1/d is slightly reduced. It should be noted that the curve from equa-
tion (29) becomes tangent to the curve for surface roughness from equa-
tion (26). Solid-line curves are also shown for the other surface rough-
nesses and show the marked reduction in load capacity as the surfaces be-
come rougher; also shown is the increase in optimum Z/d.

Although the criterion that load capacity is limited by initial con-~
tact of surface asperities at the bearing edge is conservative, in an
actual bearing this limit is not necessarily indicative of impending
failure. With conformable materials, the surface roughness at the end
of the bearing is relatively easily worn-in such that hp may approach

values close to zero. In this case, the unit load capacity curve would
be somewhere between the solid curve and the higher dashed curve.

Figure 15(b) shows the curves from an analysis of the end bearings
of the illustrative example. The curves shown are similar in form to
those in figure 15(a) for the center bearing. However, the dashed curve
for hp =0 1s obtained from figure 10(a). The solid curves are deter-

mined from the general equation (28) with & evaluated from equation
(15) for an end bearing. Comparing the curves for the end bearings with
those for the center bearing shows that the load capacities are smaller
and that the optimum Z/d indicates use of a shorter bearing. This is
realistic since the slope of the elastic curve is greater for the end
bearings than for the center bearing.
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EXPERIMENTAL DATA
Battelle Memorial Tests

In experiments to determine the mechanism of hydrodynamic failure
in journal bearings, Dayton, Allen, Davis, and Austin of Battelle Memo-
rial Institute (ref. 8) report unit load capacities of heavily loaded
bearings in excess of 10,000 psi before failure by seizure. Tests of
bearings of various materials, principally copper, babbit, and copper-
lead, were made with the simply supported beam shown in figure 16. The
test bearing was a central bearing on a short shaft supported at the
ends in roller bearings. Load was applied through a ball at the top of
the central bearing to insure alinement of loading. The test bearings
were 1.25 inch in diameter and 1.0 inch long with a diametral clearance
of 0.002 inch. SAE 10 oil preheated to 200° F was pressure fed at 40
pounds per square inch gage. The bearings were also preheated to 200° F.
Shaft speed was 6,000 rpm.

In the tests the load was applied slowly in increments of 500 psi.
With each load increase, the temperature rose slightly. However, each
succeeding increase was made after the temperature reached equilibrium
in about 3 minutes. By using this careful low-rate loading procedure,
high load capacities were achieved with an average temperature rise of
approximately 20° F. The following values of unit load were attained at
seizure for various bearing materials:

Copper Above 10,000 psi
Copper-lead 7,500 to 8,000 psi
Babbitt Above 10,000 psi

As the Battelle experimenters point out, all the bearing materials,
even those usually regarded as poor, exhibited a high load capacity when
tested under careful conditions.

Calculations of the load capacity of the test bearings from the
equations of this report show a high load capacity, although the magnitude
is somewhat less than those obtained in the tests. With an 1/d of 0.8
for the test bearings, the upper curve of figure 12 gives the following
equation for determining the load capacity at the condition for impending
metallic contact of the central bearing:

s O @) -2 ()
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For the Battelle tests the following quantities are assumed:
@ = 1.25 inch, L/d = 2.0, N = 100 rps, and E = 30x10% psi for steel.
Although the exact value for viscosity is not known, the chart value for
SAE 10 oil at 220° F is approximately 5 centipoises or 0.7x10-6 reyn.
Substituting these quantities in equation (30) gives the following values
of load capacity:

6,100 1b (total load)
4,900 psi (unit load)

P
b

il

By assuming that the lower curve of figure 1Z should be used for a
conservative estimate of load capacity, then P = 4,600 pounds and
p = 3,700 psi.

The calculated load capacities are between a half and a third of
the capacities obtained in the tests. However, the slow rate of loading
in the tests indicates that run-in was an important factor. According
to the curves of figure 12, to achieve & load capacity of two to three
times the calculated values Just given, the bearings might have been de-
formed 90 percent of the length or meore in the running-in procedure.

In subsequent tests at Battelle Memorial Institute by Dayton, Allen,
Fawcett, and Miller (ref. 9), seizure tests were made while measuring
minimum film thickness by the dielectric breakdown method. The same
testing machine was used for tests at speeds of 5,800, 3,600, and 2,200
rpm. Load capacities at selzure were somewhat lower than in the previous
tests, but the materials tested were different. The following table
shows a comparison of the calculated load capacities from the upper curve
of figure 12 and the experimental ones for the three speeds. Since in
all tests the bearings and the SAE 10 oil were preheated to 200° F, the
value of u = 0.7x10-6 reyn 1s used for the calculated load capacities.

Material Unit load capacity, p, psi

At 5,800 rpm | At 3,600 rpm | At 2,200 rpm
Test Calc. | Test Calc. | Test Calc.

25 Aluminum 5,400 | 4,800 | ----- 4,100 | =-=-- 3,500
72-25-3 Alloy | 6,800 4,800 ----- 4,100 | ----- 3,500
Bronze 7,400 | 4,800 | 4,400 | 4,100 | 2,600 | 3,500

Tin-base babbit | 5,000 | 4,800 | 4,000 | 4,100 | 3,300 | 3,500

The teble indicates that the order of magnitude of bearing capacity
is reasonably well predicted from the equations of this report and that
failures of the bearings in the tests may have been caused principally by
Jjournal deformation.

9L2-d
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Data by Falz

Falz's report (ref. 6) concerns the design of short journal bear-
ings, and from experimental findings he recommends that the 1/d ratio
should be between 0.3 and 0.8 for best load-carrying capacity to take
into account the effect of beam deflection. In his report, the curves
given herein as figure 17 are presented to show the effect of Z/d on
load capacity. Experimental points are shown, although details of the
experiment are not given. As shown in figure 17, the unit load capacity
P rises rapldly as the bearing is made shorter tc a lower limit of 1/d
approximately equal to C.2. As the bearing Z/d approaches the very
small values near zero, the load capacity then decreases to zero at a
rapid rate.

The Falz curve of unit load capacity may be compared with the
analytically determined curves of the illustrative example (fig. 15).
The analytical curves are similar in form and show that the optimum
value of Z/d is in the range of the short bearing having low Z/d
values. The analytical curves show the steep gradients on either side
of the optimum 1/d as shown in the experimental curve. However, the
gradients are less steep as hp becomes greater, because of surface

roughness at the bearing end. It is possible that in the Falz experi-
ments surface roughness at the bearing ends was a relatively minor fac-
tor, because wearing-in at the bearing ends may have caused a reduction
of hgp to near zero. If so, the gradients of the experimental curve

would be those approaching the dashed lines of figure 15. The experi-
mental and analytical curves are not compared for quantitative values,

since the conditions of speed, viscosity, and beam configuration of the
experiments are not known.

Figure 17 gives the PFalz experimental curve of total load capacity
P, which depends on both the unit load capacity p and Z/d. As shown,
the optimum Z/d based on total load is approximately 0.5 and is greater
than the value based on unit load. In any given design, the recommended
1/& would be that for total load rather than unit load.

For comparison with the Falz experimental curve for total load ca-
pacity, the analytically determined curves of figure 18(b) give the il-
lustrative example. Comparing the curve for the center bearing with
Falz's experimental curve shows that the shapes are in general similar
and that by coincidence the optimum Z/d ratios are nearly the same,
both being approximately 0.5. However, the shape of the analytical curve
for the end bearings in figure 18(b) is somewhat different from the
center bearing. The optimum Z/d for the end bearing is 1.0 for total
load capacity, although the optimum Z/d for unit load capacity is less
than 0.2 as shown in figure 15(b). The curves in figure 18(b) are deter-
mined from the curves of unit load capacity in figure 15 for
hp = 0.0000125 inch.




Figure 18(b) gives a comparison of the order of magnitude of the -

total load capacities of the center and end bearings of the illustrative

example. The capacity of the end bearing is much less than the center

bearing, although in a simple beam the end bearings are required to have

half the capacity of the center bearing. The difference in the capac-

ities of end and center bearings would be less as the beam configuration

is made stiffer by an increase in bearing diameter or by a shortening of

beam length.

9L2-H

Data by Deck

Figure 18(a) gives experimental data presented by Deck (ref. 7) of
total load capacity against Z/d for aluminum bearings. A comparison
of these data with the analytical curves of figure 18(b) shows that for
the central bearing the form of the curves is similar in some respects.
The data of the experimental and analytical curves are not directly com-
parable, since the conditions of the experiments are not known; although,
by coincidence, values of capacity are of the same order of magnitude
for the central bearing. On the basis of the experimental data, Deck
recommends that bearings should have 1/d from 0.5 to 1.0 to minimize
end pressure due to beam deflection. The analytical curves of figure
18(b) indicate that Deck's lower 1/d value would apply to central
bearings, and the upper value to end bearings.

DISCUSSION

Although bearing designers know that shaft deflection and surface
irregularities reduce bearing load capacity to less than the infinite
value predicted by hydrodynamic theory, these limiting variables have
been considered too complex for mathematical treatment. In reference 4,
the effect of bearing surface roughness on load capacity is treated ana-
lytically. The purpose of the present report is to show that the shaft
deflection problem also may be solved analytically to yield design data
of a useful order of magnitude.

Although other factors such as local high spots, out-of'-roundness,
out-of-straightness, grit, lubricant corrosion, and corrosive atmospheres
also limit bearing capacity and life, shaft deflection and surface rough-
ness appear to be of first-order importance in limiting the capacity of
heavily loaded bearings. The analysis presented herein is an attempt to
seek out the limits of thick film lubrication as the region of boundary
lubrication is approached. High load capacities may be achieved by pro-
moting conditions that permit an extremely small film thickness to exist -
free of asperities causing metallic contact. A careful running-in or
weering-in may in many cases increase load capacity because the burnishing
action permits a smaller film to exist without a friction rise by metallic -
contact,
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It should be noted that the bearing clearance is not included in
the equations of this report. Rather, the load-carrying capacity of the
film is based on minimum film thickness hy;,, as given by equations (7)

and (26). According to assumptions in reference 4, load capacity of the
film is nearly independent of clearance in heavily loaded bearings where
the eccentricity ratio exceeds 0.6. This is because f(n) in equation
(4) varies only slightly at the high eccentricity ratios.

Based on the short-bearing approximation (ref. l), the average
value of f(n) is taken as 0.718. However, the experimental data in fig-
ure 4 show higher eccentricity ratios or smaller film thicknesses for
the same loading. Thus, a value of f£(n) = 0.30 has been used to rep-
resent the experimental data for hydrodynamic capacity. As shown in
figures 9 to 13, bearing load capacities are given for f(n) of 0.718
and 0,30. A designer may wish to use a value of f(n) that from these
or other experimental hydrodynamic data seems better to apply. In this
sense a designer may choose a conservative value of f(n) as a factor of
safety. Also, a designer may evaluate load capacity P on the basis of
f(n) of 0.718 or 0.30 and divide this load by a suitable factor of safety
greater than 1.0.

The Battelle Memorial tests indicate that by a careful, slow run-in
of a central bearing high load capacities can be attained. The capacity
that can be atiained depends on the bearing material and the degree to
which the material can be made to conform to the shape of the bent jour-
nal. It is interesting that the Battelle experimenters report a tempera-
ture rise near seizure of only 20° to 50° F higher than the 200° F to
which the oil and bearings were preheated. This appears to indicate
that, after the transient phase when the bearing material deforms, the
load continues to be carried hydrodynamically. The assumption that run-
in reduces the effective length of the bearing is conservative, since no
hydrodynamic load capacity is attributed to the deformed lengths 1' at
the bearing ends. This assumption may be realistic if the deformed sur-
faces are considered to be fitted ones where no circumferential wedge
action can take place to carry the load hydrodynamically. If the bearing
ends were deformed completely around the circumference in a bellmouth
form, wedge action is possible so that hydrodynamic support would be
realized at the deformed ends and result in a higher load capacity. By
scraping the bearing to a bellmouth profile having the shape of the bent
Jjournal, the load capacity could be increased to very high magnitudes.
Scraping of bearings to bellmouth or conical ends has been utilized for
many years as a practical means of increasing the load capacity of bear-
ings with deflecting shafts.

The curves of figure 9 are the most general ones for predicting the
unit load capacity of a bearing where shaft flexibility is a variagble.
The curves include all possible cases of beam loading so long as the
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appropriate value of K 1is used. With experience, a suiltable value of
K may be determined from calculations and judgment even for complex
beam loadings. For the elementary cases of beam loading, however, the
load capacities of central and end bearings are most directly determined
from the curves of figures 10 to 13.

CONCLUSIONS

The following conclusions may be drawn from the results of this
investigation of the influence of shaft deflection and surface roughness
on the load-carrying capacity of full Journal bearings:

1. The limiting load capacity of a Jjournal bearing is predictable
to a reasonable order of magnitude by including shaft deflection or sur-
face roughness as the limiting factor.

2. In the absence of self-alining characteristics, the elastic cur-
vature of the shaft is a major limiting factor, and its effect increases
with bearing length. The analytical curves of this report substantiate
the experimental findings of Falz and Deck that the optimum length-
diameter ratio of a bearing is in the region from 0.3 to 1.0 for meximum
load capacity. Each design case, depending on beam conflguration and
surface Tinish, is unique. The optimum length-diameter ratio for a given
configuration is predictable to a reasconable order of magnitude.

3. Preforming a central bearing to conform to the shape of & Journal
deflected by a given load tends to counteract the effect of elastic de-
flecticn, so that surface finish becomes the limiting factor.,

4, For heavy loading, this report indicates a distinction between
end bearings and central bearings such that end bearings beneilt by sell-
alining or equivalent elastic mountings, but that central bearings even
if self-alined will benefit by performing to a bellmouth shape. The
curves presented facilitate estimating the magnitude of the benefit.

Cornell University,
ITthaca, N. Y., August 15, 1357.
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APPENDIX A
DETERMINATION OF MINIMUM END CLEARANCE

The geometry of figure 2 indicates that the minimum film thickness
or minimum end clearance hE may be expressed as follows:

hy = ¢, - +/e? + k%% + 2ekd cos ©

This equation may be generalized by letting A equal the ratio of
k® to the eccentricity e; that is, A = ké/e; thus, the equation becomes

hE =c. - ew/l + A% + 2A cos ) (A1)

For most bearing operating situations, the term A is considerably

less than 1. Thus, the guantity ew/i + A% + 2A cos ©® may be closely
approximated by the expression e(l + A cos ¢). The error resulting from
this approximation is evaluated in the following manner. By using this
latter expression in equation (Al), the approximate equation for the
minimum £ilm thickness at the end of a bearing is found to be

hp = ¢, - e(l + A cos o) (A2)

The range over which equation (A2) yields the best approximation may
be determined by computing the ratio of the error in hE tc the radial
clearance cg.:

h - (h
( E)approx. ( E)exact
A:k

Cr

A =n(l + A cos 9) - na/1 + A + 2A cos g (A3)
where A 1is the ratio of error in hE to radial clearance c..

The attitude angle ¢ may be calculated as a function of eccentric-
ity ratio n (ref. 1), in the following manner:

® = ten~L [E.Kl_;_ﬁzlflf] (ad)

4 n
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From equations (A3) and (A4), the variation of A as a function of
¢ and A may be determined as shown in the following table:

VALUES OF ERROR RATIO A

¢, |A=1.0l A=0.1] A=0.0l
deg

0 0.000 0.000 0.000
10 .005 .000 .000
20 .0z20 .000 .000
30 .055 .001 .000
40 .075 .00z .000
50 .090 .00z .000
60 .094 .00Z .000
70 .083 .00L .000
80 .050 .001 .000
90 .000 .000 .000

This table clearly indicates that for values of A of 0.1 or less
the error ratio is quite negligible. As A approaches 1, the error
ratio begins to be appreciable. In any practical bearing design, the
value of A would seldom if ever approach 1. For most designs A will
be less than 0.1.

Experiment (ref. 1) shows that, as the eccentricity ratio approaches
unity, the attitude angle approaches 20° rather than 0° according to
theory. This indicates that the term e-/1 + A% + 2A cos © might better
be approximated by e(l + A cos ZOO), especially in the vicinity where
n approaches 1; that is,

e/l + A% 4 28 cos ¢ = e(1 + A cos 20°) (A5)

With this latter approximation, equation (A3) becomss

A' = n(l + A cos 20°) - n~/1 + A% + 2A cos 9 (n6)

where A' is the error incurred by approximating w/i + AZ 4+ 2A cos @
with (1 + A cos 20°).

9LZ-d
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From equations (A4) and (A6) the following table of error ratios is

determined:

VALUES OF ERRCR RATIO A'

Q, A=1.0|A=0.1]A=0.01
deg

o) 0.060 0.006 0.001
10 .050 .004 .000
20 .0z5 .000 .000
30 .005 .005 .000
40 042 .008 .001
50 .067 014 .001
60 .088 .016 .002
70 .08z 015 .001
80 .058 .009 .001
90 0 0 .000

This table shows that in general the errors resulting from the use
of (1 + A cos 20°) are larger than for (1L + A cos @). However, since

(1 + A cos 200) is based on experimental findings for the region of

® < 20° and since the errors in the region 20° < ® < 0° are relatively

small, the use of this approximation seems justified.

Thus, substituting the approximation indicated by equation (A5) in-

to equation (Al) gives:

hp = (e, - e) - 0.94kB

hE = hoso - 0.94kd

(A7)
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APPENDIX B

DEFLECTION OF JOURNAL AT END BEARING OF CANTILEVER BEAM

The equation for the slope of the deflection curve at the end of a
cantilever beam as shown in figure 8 i1s known to be

2
PL
B = 557 (B1)

For the end bearing of a cantilever beam P equals pld, and for a

circular shaft I equals Substituting the preceding expressions

64 °
into equation (Bl) gives

320 (1\0 .
o = 22 (1) .2 (s2)

The defliection & within the half-length of the bearing may be ob-
tained by multiplying B of equation (B2) by one-half the length of the
bearing. Therefore,

where

=
il
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H
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!
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—
[
~~
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p
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APPENDIX C

TOTAL LOAD CAPACITY OF END BEARING OF CANTILEVER BEAM

The equations for the capacity of the end bearing of a cantilever
shaft are determined from equations (16) by substituting

K = 41° = 4(L/1)2 from appendix B.

Zﬂﬁﬁﬁil/s (%)4/3 (%)2 = 0.315 (é)l/s (for é s 1.0) (c1)
O et e dao

Equations (Cl) and (C2) provide a convenient means of determining
the variation of the total load capacity with the length of the bearing
as shown by figure 10(a). These equations may be rewritten in the fol-
lowing manner to determine the variation of the total load capacity with
the diameter of the bearing as shown in figure 11(a).

4/3 2
(u§£2)1/5 (%> (%) = %i;i%z (for 1/da £1.0)  (C3)
P L /5 11)2 _0.315 N
(uNE?) L/3 (7> (7) - 2272311/3 (for 1/d 2 1.0)  (C4)
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APPENDIX D

CALCULATION OF & FOR CENTRAL BEARING

The equation of the elastic curve of a simply supported beam with a
concentrated load at its center as shown by figure l(b) is

o Px (g2 2) L
Yy = T58T (3L - 4x (for 0<x < 2) (D1)

The maximum deflection occurs at the center of the beam and is de-

termined by letting x = % in equation (D1); thus,

_pr?

Ywax ¥ Z8ET (D2)

The deflection from the center of the beam to some station x 1is
calculated by subtracting equation (DL) from equation (D2). Therefore,

. P (3 a2 5)
yr/2 - Yx = TEET (L 3Le% + 4x (D3)

The deflection © from the center of the bearing to the end of the

bearing is readily found by letting x = L - in equation (D3):
2
Pl
® = et <3L - z) (D4)

The latter equation may be expressed more directly in terms of the
bearing geometry by letting r = i/l, the ratio of the shaft span to the
D

length of bearing. Since I = & and P = pld, equation (D4) becomes

% <é)5 (3r - 1)

PE—Z <é>3]o.167 (3r - 1)

o
]
Wl

o
1l
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Figure 1.- Shaft deflection in relation to journal bearings.
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(b) End bearing.

Figure %.- Effect of run-in on bearings of conformable material.
Bearing ends are deformed to shape of bent shaft by careful
run-in.
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Figure T.- Unsymmetrical loading condition of simply supported shaft
showing attitude of deflected shaft to end bearings.
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Figure 8.- Cantilever shaft loading condition.
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(a) Based on short-bearing approximation, f(n) = 0.718.

Figure 9.- Unit load capacity of a bearing against

1/d  at impending

contact of surfaces (hg = 0) due to shaft deflection.
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(a) Based on short-bearing approximation, f(n) = 0.718.

Figure 10.- Total load capacity of end bearings against bearing length
at impending contact of surfaces due to shaft deflection.
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Figure 11.- Total load capacity of end bearings against bearing diameter
at impending contact of surfaces due to shaft deflection.
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Figure 12.- Total load capacity of central bearings against bearing

length at impending contact of surfaces due to shaft deflection.
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Figure 13.- Total load capacity of central bearings against bearing
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Figure 14.- Hydrodynamic total load capacity against film thickness
ratio and length-diameter ratio neglecting deflection.

is sum of surface roughnesses at impending con-
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Figure 15.- Unit load capacity of bearing against bearing length for a
given design situation. Curves are analytically determined for
impending contact of surfaces due to both shaft deflection and sur-
face roughness. (Compare with experimental curve of figure 17.)
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(b) End bearing.

Figure 15.- Concluded.

3,200 —T—
hg, in. x 10
5’000 ?H-lg,ﬁ
2,800 //~25.0
2,600 ﬁ‘( '
2,400 | | @ = 1.0 in.
I L/,5o.o L = 3.0 in.
| | R = 0.5
o 22200 T b =1x 1076 reyn
2 IFT\F) E = 30 x 100 psi
p': 2,000 .,\ 1’ / N = lOO rps
5 1,800 I ‘}\ {
P l \ \Due to surface roughness (eq. (26))
(]
N
% 1,600 , l X\
y \
o 1,400 11 .
I
o
r_|
» 1,2004 4 X AL -Due to beam deflection:
H 2.5 \Q :
£ [ 25'0 \ hg = 0 (from fig. 10(a)
l,OOO { A\\ ,R = 0'5)
] 50.0- N hg = hpin (eq. (28))
800 HHH <
N
600 / N
/ )
100 / B IR
200¢/
0] 1
Length~diameter ratio, l/d

i



52

cquawTaadxe £gq sIuraesq TBIFUIO JO so13ToedeD PBOT SUTULISLSP
0} (g PU®B g °*SFox) 9N} TIsul TBIJIOWSON STT33Bd £q pesn juswoBueae 3893 Julaesd -°Q

\Z

Futaeaq 3189]L

N

\

LA

N

0
)

Z

yrs.

N

peoT

NN

T oan3Td




E-276

[%)]
A

1,100
1,000 (ii
900
|~ D
g 800
ot
w
9
& 700
o
) 600
5
@ P
8 1]
500 Va jg\ 2,500
[o'4]
5 N
5 N
& 400 \ 2,000
\ g‘é’
300 \\ N, 500 -
W
\ rd"
200 1 \\\ 1,ooo'§
100 500
0
0 i .8 1.2 1.6

Length-diameter ratio, 1/4

Figure 17.- Curves of bearing load capacity against Z/d determined
from experiment (ref. 6). Compare with analytical curves of fig-
ures 15(a), 15(b), and 18(b).
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